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Allstract-For shells undergoing finite rotations, a general theory is formulated in terms ofconsistent
displacement and force variables. An independent rotation vector is used for the description of the
deformation state. The strain-displacement equations are obtained considering shear deformations.
These relations are then transformed by a variational procedure into consistent equilibrium equa­
tions and boundary conditions, the validity of which is also confirmed by an independent two­
dimensional derivation. The paper closes with the physical interpretation of the force variables and
the formulation of the constitutive equations.

I. INTRODUCTION

Every new attempt at deriving a non-linear shell theory has, due to the considerable
development of computational mechanics, to be oriented to new aspects. In their general
form, the non-linear theories are not in themselves accessible to numerical analysis and
have to be transformed for this purpose into incremental formulations which are, however,
always linear in the unknown variables, independently of the order of the nonlinearity of
the initial equations[I-4]. Thus, the new theories need not be simplified by assumptions
concerning the order ofmagnitude of the deformation variables. For numerical analysis, it
is more suitable to have theories with a wide range of applicability than simplified ones the
validity of which could hardly be checked by a given practical problem. Moreover, it
should be remembered that the deformation variables (displacements, rotations, strains,
deformation gradients, ...) are related by geometrical constraints so that the order of
magnitude of certain variables cannot be judged independently of the others. If we allow
finite rotations[5,6] for instance, this will have, according to the well-known theorems of
GauB and Codazzi[1, 7], consequences for the variables connected with the first funda­
mental form of the deformed middle surface.

A further question arising with regard to the derivation of a shell theory is the choice
of a suitable kinematic assumption about the transformation of the three-dimensional
initial equations into two-dimensional ones. The essential advantage ofthe Kirchhoff-Love
theories, namely the description of the deformation by only three independent displacement
components, is not so essential from a purely numerical point of view[2, 3]. It should also
be mentioned that the structure of the corresponding equations, especially of the dynamic
boundary conditions[8] are too complicated even for numerical analysis. On the other hand
kinematic assumptions allowing shear deformations ensure a very systematical derivation,
leading to equations with a relatively simple structure, as can be observed in the present
derivation. Furthermore, shear deformation theories can be regarded as a suitable starting
point for the derivation of KirchhofT-Love theories. Finally, it should be mentioned that
theories with shear deformations have been used successfully in recent years for numerical
applications[2,4].

From the mechanical point of view[l, 9, 10], each shell theory has to satisfy the
requirements ofconsistency. A consistent theory will be understood here to be a formulation
the equilibrium and dynamic boundary conditions of which are of the same order of
accuracy as the kinematic relations involving the adopted kinematic model. This require­
ment can be fulfilled by a three-dimensional variational derivation leading to equations
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which are related by means of Green's theorem. The use of the principle of virtual work
for this purpose, instead of the principle ofstationary potential energy[8), has a considerable
advantage: it allows the relationship existing between the equations in question to be
discovered independent of the material behaviour. Thus, the mathematical rules resulting
from this relationship for the corresponding operators[ll] can be used in an elegant manner
for the derivation of non-linear theories.

In variational derivations, the definition of force variables is obtained formally by a
mathematical procedure. For practical applications, it is therefore necessary to relate them
to physical variables which can be interpreted physically in a two-dimensional shell element.
This means, that a variational derivation ensuring a consistent formulation has to be
complemented by a further two-dimensional investigation in order to satisfy the require­
ments of practical applications.

According to the above discussion, the purpose of this paper can be formulated as
follows. It consists of a derivation of a non-linear theory considering shear deformations.
Thereby, assumptions concerning the order of magnitude of deformations will be avoided
in order not to restrict the applicability of the theory. The basis of the derivation is the
principle of virtual work of a three-dimensional continuum. Internal and boundary forces
are first introduced by a variational procedure and are then related to those defined on the
two-dimensional shell element. It is shown that the equilibrium conditions first derived
variationally can also be obtained by a purely two-dimensional derivation.

2. GEOMETRICAL RELAnONS

Let t = t(9fl) be the position vector of a point Pof the undeformed middle surface t
where (J' are curvilinear coordinates. All the geometrical variables associated with the
middle surface will be denoted by the usual notations[l, 7, 12], having however the suffix
n if they refer to undeformed state. Thus

base vectors: i fl = t.fl , afl = "flPap

metric tensors: aflP = afl •ap, aflP =afl •aP

d . 0 0.:1. ( ° )2etermmant: a = a11U22- a12

o 0 ° bOP bO 11.pPcurvature tensors: b"p = - a" • a 3,p, ,,= flpU •

(1)

(2)

(3)

(4)

Herein, 83 denotes the unit normal vector of t and the notation ( ).fl partial derivatives
with respect to (J'. As usual, Greek indices represent the numbers 1,2 and the Latin indices
the numbers 1,2,3. The covariant derivatives with respect to the undeformed state twill
be denoted by ( )Ia'

The geometrical variables of the deformed middle surface F will be denoted, as are
needed, without (0). Thus, afl = r." are the base vectors associated with the defonnedposition
P of the point P.

Let (]3 be the distance of an arbitrary point P* of the undeformed shell· from t,
measured in the direction of 83' Thus, from the position vector (Fig. 1)

(5)

we obtain for the base vectors ir of the point p*

(6)

where
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0*
Q,

Deformed state

8'

Fig. 1. The geometry of the shell continuum.

(7)

The notation ( )* will be used, also in the following, to characterize variables related to the
shell continuum P*.

Let P and p* be the positions of Pand P*, respectively, in the deformed state. If we
now, according to eqn (13), assume that the distance between P and p* has the value 03

,

then we can express the position vector r* related to P* by

(8)

from which it follows

(9)

Here, a3 = a3(0") is a unit vector, which is not, however, perpendicular to the deformed
middle surface F. Due to this fact, a: cannot be related, similar to i:, eqns (6), to the
curvature tensor of the corresponding middle surface. For later use we recall the definition
[I, 7]

(10)

so that the volume element dV of the shell continuum can be expressed as
dV = Jo* dOl d0 2 d0 3

• Without the notation e), eqn (10) is also valid for the deformed
state.

Let us now assume that the middle surface 1 is bounded by a smooth closed curve C,
the line element of which is denoted by d.f. Along C, we introduce by the relations

(11)

the unit tangent vector t and the unit normal vector Ii, both vectors lying in I. Vectors (11)
are related by

(12)

and define, together with 83' a right handed triad (Ii, t, '3) which will be used later for the
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Fig. 2. The deformation state.

definition ofphysical boundary variables. In eqns (12), lmP is the permutation tensor associ­
ated with F.

3. STRAIN-DISPLACEMENT RELATIONS

For the definition of two-dimensional displacement variables we assume that points
lying in the direction of the unit normal vector 83 are also after the deformation on a
straight and that no changes oflength occur in this direction. Thus, a point p* of the shell
continuum takes, in the deformed state, the position P*, according to Fig. 2 and the
displacement vector v* from P* to p* can be expressed in the form

(13)

where a3 is a unit vector which shows in the 03-direction of the deformed shell continuum.
The displacement vector of the middle surface v and the difference vector w will be

expressed in terms of the base vectors Ai of the undeformed state F. Thus

(14)

(15)

Using the deformation gradients

(16)

(17)

which are related to the partial derivatives V.m and W.m by

(18)

(19)

we obtain from eqns (14) for the vectors am of the deformed state F

(20)

while the unit vector a3 is, according to eqns (15), given by
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Fig. 3. The rotation vector.

(21)

In view of our kinematic assumption that 83° 83 = I, the normal component W3 of the vector
W may be given in terms of the tangential components W~. Thus, using eqns (21) we have

where the negative sign in front of the square root has to be taken for the values
n/2 ~ (J.) ~ 3n/2 of the rotation angle (J.) defined in Fig. 3.

For later use, particularly for the formulation of geometrical boundary conditions, it
is convenient to introduce the rotation vector Q), related to wby the vectorial product

(23)

which, using eqns (15), gives

(24)

where f.~fJ is the permutation tensor of surface P. According to eqns (23) the vector Q) stands
perpendicular to the plan defined by the rotation ofa3 into 83' Furthermore, its magnitude
is related to the angle of rotation (J.) by

as can easily be deduced from Fig. 3. Again from Fig. 3, we have

I . 2 I. 2 (J.) Sin Q) Q)0Q)

W3= -2sm 2= -2W
o
w = - 00= -2-W

2 cos2 2 cos2 2

so that

(25)

(26)
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• 2 W
1+ W3 = 1-2 SIn "2 = cos w. (27)

Substituting eqns (24) and (26) into eqns (15) the vector w can now be expressed solely in
terms of w by the non-linear relations

(28)

showing the fact that (f) can be regarded as the rotation vector of li3[1, 13]. However, w
must not be confused with the rotation vector of the base vector system Iii as is introduced
by several authors[5, 14]. Soon, we shall discover the mechanical significance of w when we
formulate the virtual work of physical stress couples.

For the definition of two-dimensional strain measures we use Green's strain tensor of
a three-dimensional continuum defined by[l, 7, 12]

Y.. = l(a* •a'!' -a' •Ii'!') = l(a' . v'" + Ii'!' •v'" +v'" •v*).IJ 2 i J 1 J 2 1 .J J .1 .1 .J (29)

In order to calculate the tangential components Ya.~ we first introduce into this relation
transformations (6) and (9). Then, using (7) and (18)-(21) and neglecting terms of second
order in (P, we obtain

(30)

where the abbreviations

and

1 0, (I. 1::1

fJa.~ = fJ~a. = 2[wa.l~+ w~la, - b~o/~.i - b/io/a" - 2b.pW3
A. 0 A I)

+o/~.(wll.-bla.W3)+o/•. (W11~-bl~W3)

+ o//I3(W3.• +iJ~W.l) +o/dW3.P + iJiw.,)]

(31 )

(32)

denote the first a.., and the second strain tensor of the middle surface PI1~' Using in addition
the identity

(33)

which has been found from eqns (21) and (22), we obtain similarly for Ya,3

(34)

If we put the shear deformation Y. equal to zero, then this relation degenerates to the well­
known orthogonality condition a,.' 83 = 0, characterizing the Kirchhoff-Love theories.
Considering eqns (22), it can be finally shown that the remaining component Y33 of Green's
tensor (29) vanishes identically. Thus, the state of deformation of the shell continuum is
described entirely by the strain measures (31), (32) and (34) as
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YI} = [!o~ .: Y.~J = [C!0~~~3~0~ ~ 1hJ. (35)
Y30 I Y33 2Yo I 0

4. THE PRINCIPLE OF VIRTUAL WORK AND THE DEFINITION OF CONSISTENT FORCE
VARIABLES

The two-dimensional internal forces will be called consistent if they are related, in the
corresponding expression of virtual work, to the first variation of the strain variables
introduced in eqns (31), (32) and (34). For their derivation, we shall use the three-dimen­
sional expression of internal virtual work which can, in terms of the Cauchy stress tensor
"ij and the Piola-Kirchhoff stress tensor of the second kind i j = .j(o*/O*)"ij, be given in
the alternative forms

where

A=J(a;) (37)

is related to the undeformed shell continuum. Substituting eqn (35) into eqn (36) and
remembering that the surface element dF = .J0 dO I d0 2 is independent of the parameter 03

,

we obtain the two-dimensional relation

(38)

where the consistent force variables defined as

are called the pseudo-stress resultant tensor, the pseudo-shear stress vector and the moment
tensor, respectively. Because of the well-known symmetry s"fJ = sP", both tensors Nto{J) and
Mt.(1) are also symmetrical which is indicated by putting the corresponding indices in round
brackets. In eqns (39) h denotes the shell thickness.

In order to make the load variables accessible for practical applications it is convenient
to introduce them directly on the two-dimensional middle surface element. Thus, we denote
by p dE and c dE the load resultant and the load-moment resultant acting on the element
dE of the deformed middle surface E. Now, we introduce, using the factor dE/dF = .J(a/a)
and transformations (20) and (21), the following load components:

J(~)p =P·a.+ p3a3= p·a.+p3a3 ,

J(i)c = C·. 3 xa. = (J +w3)c·1l3 xa.+(c5~+cp~Jw·CfJa. xap (40)

which are, according to transformations (20) and (21), related by
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pO: = pi!({}p+<pp)+p3WO:, p3 = PJ'(fJi!3+ p3 (1 +W3),

cO: = Ci!(C>p + (fJp - 1:':t'3 (fJi!J). (41)

As in egns (41), we shall also in the following denote the variables defined with respect of
the deformed reference frame 8 i by the upper case letters, preserving the lower case letters
for those defined in the undeformed reference frame ai' The virtual work performed by the
loads, egns (40), along the independent virtual displacements by and fJw is, using eqns (14),
(23) and (24), given by

(42)

The expression given above for the virtual work of the load couple vector c in terms of the
rotation vector c>w is at this stage an assumption, the validity of which, however, will be
confirmed later by a three-dimensional derivation, egns (68).

Finally, we have to formulate the virtual work of the inertia forces due to dynamic
effects. The corresponding three-dimensional expression is, according to eqns (37), given
by

where /J is the mass density of the undeformed shell continuum and dots (.) denote
derivatives with respect to time. Introducing eqns (13) into egns (43) and using the approxi­
mation jJ. ~ 1, we obtain after integration with respect to 03

b*AaD = -/JfL(hV'bY+ ~~ w'fJw)dF. (44)

If we now substitute v and wfrom eqns (14) and (15) and use, according to egns (22), the
relation

for the elimination of the dependent variation bW3, then expression (44) reduces to

Since the force variables which can be prescribed along the boundary are still not defined
we now consider a boundary value problem with prescribed boundary displacements
(bv, = fJw", = 0). In this case the virtual work of the forces acting upon the boundary curve
of the shell vanishes indentically and the principle of virtual work can, using eqns (38), (42)
and (46), be expressed in the form
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b*A = cS*AII+b*Ai = f1(pPbVp+p3e5V3+cPe5WP) dF

-IJf1{h(vPbVP+ V3e5V 3) + ~~ (WP- I :~3 W3)e5WP} dF

-f1(N(lIme5all/1+Q"e5YII+M(lIme5plI/1) dF= O. (47)

5. THE EQUATIONS OF MOTION AND THE DEFINITION OF TENSORIAL BOUNDARY
FORCES

The corresponding relations will be derived here from the principle of virtual work,
eqns (47), using the well-known rules of the calculus of variation. This procedure makes it
possible to derive relations which are in the same order of accuracy as the initial kinematic
relations (31), (32) and (34) and which can be, therefore, regarded as a consistent for­
mulation.

For the derivation we first express in eqns (47) the strains all/l' PIIP and y" by eqns (31),
(32) and (34). Then, we substitute the dependent variation e5W3 from constraint (45) in order
to transform in the following all the terms connected with the covariant derivatives bV

'
1P

and e5wlIl/I by means of Green's theorem, for instance, according to

where Ii = "llall is the unit normal of the boundary curve ~. This procedure leads to the
following equations of motion:

where the first three abbreviations

nll/l = N(lIp)(e5~+rpO-M(lIp)(b:-l/I~J+QIIWP,

qll = QII(l+W3)+N(Clp)rpp3+ M (Clp)l/Iph

mlllJ = M(lIp) (15/1+ rt>1J - ~ rt> )
I' ""1'. 1+ W

3
..",3 ,

(49)

(50)

are, as will be shown in eqns (54) and (58), force variables defined with respect of the
undeformed reference frame ai' The last variable q*/I is, however, not interpretable in tqis
sense.

Furthermore, we deduce from the line integral
SAS 23: 10-£
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Fig. 4. The equilibrium of the middle surface element.

(51)

obtained also by the same procedure, the definition of the tensorial force variables which
can be prescribed along the boundary of the shell t

(52)

Integral (51) expresses the virtual work of the boundary forces and vanishes identically, if
the boundary displacements Vi and w" are, as are supposed above for convenience, all
prescribed.

6. THE PHYSICAL INTERPRETATION OF THE FORCE VARIABLES

All the force variables have been introduced until now using a variational procedure.
In the following we have to relate them with physical variables interpretable on a two­
dimensional shell element in order to make the theory accessible for practical applications.
Moreover, we are interested to find out if the equations of motions, eqns (49), can also be
obtained by a two-dimensional derivation. Especially in non-linear theories, it is rather
difficult to obtain equations in full coincidence using two different approaches.

Now, we consider, as illustrated in Fig. 4, an element of the deformed middle surface.
Let n"Ja dfJ/l be the stress resultant vector acting on an element of the coordinate line
fJ" == const, having the length ds</l> == Ja/l/l d9/l (a :#: fJ). The stress couple resultant acting
on the same element will be denoted by m"Ja dfJII. By the well-known integration procedure
of the stresses sij with respect of the parameter (J3 it can be shown that

With the help of eqns (9), (19), (20) and (21) and in view of definitions (39) and (50), the
first relation reduces to
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showing the geometrical meaning of the abbreviations introduced in definitions (50). Intro­
ducing eqns (20) and (21) into the decomposition

(55)

with respect of the deformed reference frame aj, we obtain furthermore by comparison with
eqn (54)

and hence, in view of definitions (50)

(~~+q{)(N(«Pl_N<<P) = wP(Q«-Q«)+(b~-ljI~)M(<<P),

(I +W3) (Q«-Q«) = lpP3(N«P-N(<<fI)-ljInM(<<Pl.

(56)

(57)

According to these non-linear relations, the variationally defined forces N(<<Pl and Q«, eqns
(39) can be transformed into the geometrically defined ones N«P and Q«, eqn (55).

Considering in addition the identity a3· a3.« = 0, eqn (53h can, by a similar procedure,
be transformed into

J(i)m« = M(<<fI)a3xap

= (1 +w3)m«Pi3x ip+WA(~~+lp~JM(<<P)iA x lip.

(58)

This shows the physical meaning of the moment tensor M(<<fI) as components of the stress
couple vector in terms of the base vectors 83 x 8p = E:ppaP of the deformed state F. In view
of eqn (55) a similar interpretation can also be given for the variables Nap and Q« while
N(<<{i) and (1« are in this sense not directly interpretable and called therefore pseudo-forces.
Remembering that M(<<fI) and m«, eqns (53), were first introduced independently we can
deduce from eqns (58) that the kinematic assumption (13) used in eqn (38) for the
definition of M(<<P) implies a stress couple vector ma which must be perpendicular to 83'

Finally, it can be shown that

(59)

where N(aP>, M(<<P> and Q(<<> are physical force variables, having the same direction as the
corresponding tensorial components N«P, M(a{i) and Q«, referring however. to the unit length
of the coordinate lines (J" = const of the deformed middle surface F. For an arbitrary large
displacement it is not possible to relate the physical components (59) directly to the pseudo­
forces N(<<fIl and a«, which have first to be transformed into N«P and Q« according to the
non-linear transformations (57).

According to Fig. 4 the vectorial equilibrium equations of the shell element are given
by



1412 Y. BA~AR

which, usingeqns (20), (21), (40), (54) and (58), can be transformed into the same component
equations as are established in eqns (49) by the variational method. This can be regarded
as a significant advantage of the equations presented here.

In order to define physical boundary forces, we introduce along the deformed boundary
curve C the stress resultant n and the stress couple m, both vectors referring to the unit
length of the same curve. Formulating the equilibrium conditions of a shell subjected to
the loads p and c and, along the boundary curve C, to nand m, it can be shown with the
help of Green's theorem and the equilibrium equations (60) that

ds J(a) ~. <is J(a) ~.djn = "& n U~, dsm = "& m u~ (61)

Ii = u~a~ being the normal vector of the undeformed curve C. With the help of the vectors
Ii, t (1 I) and a3 we now introduce the following physical force variables along the boundary
c:

(62)

which are, due to the scaling factor dslds used by the decomposition, force variables per
unit length of the undeformed curve C.

Physical boundary displacements can be defined similarly by

(63)

where, from eqns (II), (12), (14), (23) and (24)

Since the vector m is, according to eqns (58) and (61), perpendicular to 83 (m· a 3 = 0) the
component m3 (62) is a dependent variable which can be expressed in terms of m, and mu­

Thus, the scalar product of eqn (63), with 83 from eqns (21) yields

(65)

For the definition of the physical boundary forces which can be prescribed along the
boundary of the shell we now refer to the virtual work c5*Aac (51) which we have to
transform first into a vectorial form. According to eqns (20), (21), (28) and (50) we can
write

M(aP)(a3 X a/l)· c5w = (1 +w3)map (a3 x a/l)· c5w = (I +w3)maPap· c5w

= (1 +w3)ma/lc5wp_
(66)

Thus, considering also eqns (14), (54) and (61), it can be verified that expression (51) is
identical with the following one:
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which in turn by virtue of eqns (62) and (63) reduces to

1413

(67)

The vectorial expression (67) shows that ~w is the variable needed to express the virtual
work of the physical stress couple (ds/d.\I)m, which justifies its definition in this theory.
From eqn (68) we seen that nt, nu , •• , are the physical force variables to be prescribed
in this theory as they are connected with the variation of the independent boundary
displacements.

If we now substitute eqn (24h into eqn (51) in order to replace bVa and bWa by

we obtain in comparison with eqn (68) the following transformations:

afiO ln, = n Ua fI'

(69)

(70)

for the physical force variables to be prescribed along the boundary curve C.
Considering the virtual work of boundary forces given in eqn (68) and the following

boundary conditions:

(71)

along the parts C, and Cr of the boundary curve C, the principle of virtual work takes finally
the form

where the notation ( )0 characterize the given boundary values.
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7. CONSTITUTIVE EQUATIONS

For hyperelastic shells the constitutive equations can be expressed in general form as

(73)

where 1t; is the specific energy density per unit area of the undeformed middle surface. Now,
we restrict our attention to a Hookean material the physical properties of which are
characterized by Young's modulus E and Poisson's ratio v. If we furthermore assume that
the strain measures (1.«{t and l'« are of negligible order ofmagnitude in comparison with unity
then the following expression can be derived for 1t; according to the well-known procedure
of the shell theory[1]

(74)

where

and

Eh Eh 3 Eh
D = l-v2' B = 12(1-v2)' Gh =: 2(1 +v)

Substituting eqn (74) into eqns (73) yields the relations

(75)

(76)

(77)

which are formally identical with those of the linear theory[l]. In view of eqn (74) the
internal virtual work given in eqns (72) can now be expressed as a complete variation of
the elastic potential1t;

(78)

REFERENCES

I. Y. Ba§ar und W. B. Kriitzig, Mechanik der Fliichentragwerke. Vieweg Verlag, Braunschweig (1985).
2. T. Dickel, Eine geometrisch-nichllin«4re, schubelaslische Fliichelllragwerkstheorie, ihre inkremenlelJe Form und

numerische Behandlung mil dem Mehrslelitlnwrfahren als DWcrelisierungsmelltode. Mitteilung aus demlnstitut
fiir Meehanik, Heft 2, Hochschule der Buttdeswebr Hambutg (1980).

3. R. Harte, Doppelt gekriimmte Finite Dreieckselemente fUr die lineare und geometrisch nichtlineare
Berecbnung allgemeiner FIiehentragwerke. Technisch-wissenschaftlice Mitteilungen des Instituts fiir
Konstruktiven Ingenieurbau Nr. 82~IO, Ruhr-UDivorsitit Bochum (1982).

4. L. Reelee, Behandlung groBer Rotationen elastischer Flicbentragwerke aus der Basis einer Theorie
schubweicher SChalen und einem gemiSi;hten Finite--Element Ko_t. Diucrtation der Ruhr-Universitit
Bochum (1986).

5. W. Pietraszkiewicz, Finite RotatiollS and lAgrangean Description in the Non-linear Theory of Shells. Polish
Scientific Publishers, Warschau (1979).

6. W. Pietraszkiewicz, Lagrangean description and incremental formulation in the non-linear theory of thin
shells. Int. J. Non-linear Mech. 19(2), 115-139 (1984).

7. A. E. Green and W. lema, Theoretical EltBIicity, 2nd Edn. Clarendon Press, Oxford (1968).
8. L. P. Nolte, Beitrag zur Herleitung und vergleichende Untersuchung geometrisch nichtlinearer SChalentheorien

unter Beriicksichtigung groBer Rotationen. Mitteilungen aus dem Institut fur Meehanik Nr. 39, Ruhr­
Universitit Bochum (1983).

9. W. B. Kratzig, Optimale Schalengruttdgleichungen und deren Leistungsf'ahigkeit. ZAMM 54,265-276 (1974).



A consistent theory of geometrically non-linear shells with an independent rotation vector 1415

10. P. M. Naghdi. The theory of shells and plates. In Handbuch der Physik, Band VI, A2, pp. 425-MO. Springer,
Berlin (1972).

11. Y. B.r, Zur Struktur konsistenter inkrementeller Theorien fUr geometrisch nichtlineare F1iichentragwerke
und deten Operatordarstellung. Ingenieur-Archiv 56(1986).

12. G. Wempner, Mechanics of Solids. McGraw-Hill, New York (1973).
13. Y. Sapr, Eine geometriseh nichtlineare Schalentheorie. Konstruktiver Ingenieurbau Berichte des Instituts

fUr Konstruktiven Ingenieurbau Nr. 38{39, Ruhr-Universitiit Bochum, pp. 7-14 (1981).
14. J. G. Simmonds and D. A. Danielsen, Non-linear shell theory with a finite rotation vector. Proc. Kon. Ned.

Ak. Wet. Ser. B, 73, 460-478 (1970).


